

NEPAL POWER INVESTMENT SUMMIT 2018 Soaltee Crowne Plaza Tahachal Marg, Kathmandu, Nepal

Development of Francis turbine at Kathmandu University to initiate a new business in Hydropower market under Himalayan basins

> Biraj Singh Thapa, PhD Assistant Professor, Department of Mechanical Engineering Kathmandu University Dhulikhel, Nepal bst@ku.edu.np

World: Hydropower Potential

Developed

Asia: *Hydropower history*

1897, India Sidrapong Hydelpower Station 2*65 kW 2017: 51.98 GW (61.87% of TF)

1911, Nepal
Pharping Hydro Power Project
2*250 kW
2017: 0.867 GW (1.84% of TF)

1912, China

Shilongba Hydroelectric Power Station

2*240 kW

2017: 331.11 GW (41.47% of TF)

NPIS-2018

Kathmandu University

Hydropower Development Opportunities

Status of Hydropower Development: Nepal

S.N.	Summary status of hydropower development	No. of projects	Capacity (MW)
1	Completed projects	80	937.31
2	Projects under construction	57	4935
3	Issued construction	148	4322.59
5	licenses for generation		
4	Issued survey licenses	289	13397.85
5	Application received for	23	2084.16
5	survey licenses		
	Total (2-5)		24739.56

Ref: Department of Electricity Development, Government of Nepal, 2017

South & South East Asia

Carata	Tech feasible	Installed	Planned
Country	(GWh/year)	(MW)	(MW)
Afghanistan	25000 MW	400	~500-1000
Bhutan	>99250	1615	8530
Cambodia	8600 MW	1267	4378-6513
India	660000	51494	~10000-98500
Laos	20000 MW	4168	4000-17000
Lebanon	1500	221	200-300
Myanmar	39720 MW	3140	10000-17000
Pakistan	204000	7264	~17000-20000
Sri Lanka	8250	1624	>267
TOTAL		71423	54975-169425

Ref: World Atlas and Industry Guide 2012, Int. Journal of Hydropower and Dams Hydropower Status Report 2016, Int. Hydropower Association

Hydropower Challenges in Nepal

Sediment Concentration and Erosion rates for major river basins in Nepal

4 MW*3 Francis runner at Jhimruk Hydroelectric Center, Nepal Ref: O.G. Dahlhaug, 2004

1.7 MW*3 Pelton turbine Andhi Khola Hydro power plant Nepal, Ref: B. Ole G. Dahlhaug, 2004

Turbine Design Philosophy and Performance

 3
 2
 1

 4
 3
 2

 5
 1
 Spiral casing

 5
 30% of Hn
 1

 3
 Guide vane

 4
 Runner

 5
 Draft tube

 10-15 m/s

250 MW*6 Francis runner at Nathpa Jhakri Powerplant, India Ref: H.K. Sharma, 2010

48 MW*3 Francis turbine at Kaligandaki-A Hydroelectric Center, Nepal, Ref: B. Chhetri, 2013

NPIS-2018

Loss of Energy Generation

S.N	Plant Name	Owner	Installed Capacity	Annual energy generation	Energy Price	1% Loss of Turbine Efficiency	1% Loss of Turbine Efficiency
			[MW]	[GWh/yr]	[¢/kWh]	[GWh/yr]	[USD/yr]
1	Kaligandaki 'A'	NEA	144.00	750.84	0.78	7.51	$583,\!178.25$
2	Mid-Marsyangdi	NEA	70.00	435.56	0.78	4.36	$338,\!298.07$
3	Marsyandi	NEA	69.00	441.74	0.78	4.42	343,096.39
4	Kulekhani I	NEA	60.00	71.36	0.78	0.71	55,422.14
5	Kulekhani II	NEA	32.00	36.06	0.78	0.36	28,004.16
6	Trishuli	NEA	24.00	125.03	0.78	1.25	97,107.34
7	Modi	NEA	14.80	62.79	0.78	0.63	48,766.76
8	Devighat	NEA	15.00	94.31	0.78	0.94	73,247.76
9	Sunkoshi	NEA	10.05	35.99	0.78	0.36	$27,\!956.66$
10	Jhimruk	BPC	12.00	72.00	0.78	0.72	55,922.33
11	Khimti I	HPL	60.00	350.00	0.78	3.50	271,844.66
12	Chilime	CHC	22.1	137.90	0.78	1.38	107,106.80
13	Bhote Khosi	BKPC	45	293.2	0.78	2.932	227,728.16
		Total	555.85	2906.76		29.07	2.25 Million

PPA rates: <u>http://www.moen.gov.np/pdf_files/PPA-Rate-Storage-PROR-ROR.pdf</u>

Thermodynamic efficiency measurement a Jhimruk HPP

Ref: O.G. Dahlhaug, 2003

Other Financial Losses

Repair and Maintenance Costs

Downtime Costs

Turbine Manufacturing Experiences of Nepal

- 1962: First turbine manufactured in Nepal, 5 kW Propeller
- 1973: First Crossflow turbine manufactured in Nepal
- 1975: First Pelton turbine manufactured in Nepal
- 2016: Turbine manufactures 58, Unit Capacity upto 100 kW Total capacity 30 MW, Export 0.6 MW

Turbine Testing Lab at KU

Major Objectives: Performance Testing of Hydraulic Machines **Development of New Turbines** 100CUBIC METERS **Education and Training** Applied Research to Solve Problems of Hydropower Industry TURBINE TESTING LAB OWER RESERVOIR **300**CUBIC METERS

Inaugurated on 10 November 2011

Specifications:

- ➢ 30 m Open System Head
- ▶ 150 m Closed System Head
- ➤ 500 l/s Maximum Flow
- ➤ 300 kW Maximum Testing Capacity
- ➤ 300 m³ Lower Reservoir
- ▶ 100 m³ Upper Reservoir
- ≻ 5000 kg EOT Crane Capacity

NPIS-2018

Kathmandu University

Kickoff Francis Turbine R&D at TTL, 2012

CAD Model

3D Printer

Plastic section of a runner sector

Wax section

NPIS-2018

Development of 2 kW Francis Runner

Wax runner with vents

Casted runner after

finishing

Plaster mold for runner

Kathmandu University

A milestone for Francis Turbine Manufacturing, 2013

Stay ring with stay vane

Spiral Casing Sections


```
Casted Runner Blades
```


0.2-

0.1-

NPIS-2018

Turbine in test rig at TTL

Development of 92 kW Francis Turbine

Assembly of the runner blades

Guide vanes

Kathmandu University

TTL Activities and Achievements

Academic Activities:

Activities	Completed	Ongoing	Total
PhD	2	2	4
MS by research	5	1	6
Masters Thesis	17	2	19
Undergraduates thesis	51	8	59
Journal Publications	35	5	40

Certification and Services:

Test Facilities:

- 5 kW Crossflow turbine test rig and procedures, *KETEP, 2013*
- 20 kW Crossflow turbine test rig and procedures, *AEPC, 2014*
- 22 kW Pelton turbine test rig and procedures, *AEPC, 2014*
- 92 kW Francis turbine test rig and procedures, *EnergizeNepal, 2016*

Activities	Client	year
Test certification of 1 kW Pico-propeller turbine	PEEDA	2012
Design validation of 100 kW Crossflow turbine	UTS	2013
Detail study of root crack in 12 MW Pelton runner	HPL	2014
Design and analysis of penstock bifurcation for 6 MW HPP	Daraudi HPP	2014
Detail design of 300 kW Francis turbine (under discussion)	IPS	2017

Future Strategy: Center of Excellence (CoE) Technology and Entrepreneurship

CoE at TTL for Hydropower Development

Aim: Nepalese hydropower industries capable to produce hydro turbines addressing local and regional technical challenges through continuous research and development activities

Components	Goals	Vision 2022
Model Testing	Establish IEC standard Francis turbine test facilities serving at the regional level.	Model test of commercial projects, at least one, at each national and regional level.
and	Initiate turbine manufacturing in Nepal with the new design technology for reducing sediment erosion.	System design of electromechanical components with 5 MW unit size Francis turbine manufactured in Nepal.
Services and Training	Provide technical services and trainings for repair, maintenance and operation of turbines in sediment-laden projects.	Third party quality control of turbine repair. Services for efficient power plant operation. Training packages for different target groups.

Previously Proposed Models for Business

- Both model were focused to develop technical competence in University and transfer it to Industry.
- University was in leading role to initiate new business, which was not successful.

The forward step: A Breakthrough

A collaborative initiative of Industries and Academia

- A private limited company by a team with high professional experience in design and development of hydropower systems in the leading role.
- Design and Research experts from Universities in supporting role.
- Consortium providing a complete '*water-to-wire*' solution for hydropower.
- The solution includes analysis, design, manufacture or supply and maintenance of all electro mechanical equipment in hydropower projects.
- By 2030 the company should aim to develop a complete in-house technology for design and manufacture of turbine components for up to 25 MW unit size.

Need of Sustainable Partnership

Business Execution Chain

Business Development Plan

Open Discussion: The Stakeholders

Executing The Pilot Project

• Lesson learned.

NPIS-2018

Challenges/ Discussions

- Formation of the project consortium and company.
- Role of design experts (University CoE) in overall business.
- Response from Hydropower market and existing players.
- Design competence and guarantee issues on turbine design.
- Industrial capacity for turbine manufacturing.
- System integration of components from different suppliers.
- Acquiring and completing the pilot project.
- Conflicts of mutual interest between partners.
- Support from hydropower industry and government.

Thank you!