

Hydropower Financing and Risk Management Nepal

ECONOMICS: SOME KEY CONCEPTS

KATHMANDU

NOVEMBER 2018

TRULS HOLTEDAHL

TOPICS MENU

- **1. HYDROPOWER IN A CONTEXT**
- 2. SOME ASPECTS OF FINANCIAL & ECONOMIC ANALYSES
- 3. SOME COST & PRICING CONCEPTS
- 4. ENVIRONMENTAL IMPACTS IN ECONOMIC ANALYSIS OF HPPs
- 5. FINANCIAL & ECONOMIC ANALYSES: PROCEDURES IN FEASIBILITY STUDIES

"Economics is extremely useful as a form of employment for economists."

J.K. Galbraith Canadian/American economist

TEN PRINCIPLES OF ECONOMICS

(from an introductory textbook in economics)

HOW PEOPLE MAKE
 DECISIONS

- HOW PEOPLE
 INTERACT
- HOW THE ECONOMY
 AS A WHOLE
 WORKS

- 1. PEOPLE FACE TRADE-OFFS
- 2. THE COST OF SOMETHING IS WHAT YOU GIVE UP TO GET IT
- 3. RATIONAL PEOPLE THINK AT THE MARGIN
- 4. PEOPLE RESPOND TO INCENTIVES
- 5. TRADE CAN MAKE EVERYBODY BETTER OFF
- 6. MARKETS ARE USUALLY A GOOD WAY TO ORGANISE ECONOMIC ACTIVITY
- 7. GOVERNMENTS CAN SOMETIMES IMPROVE MARKET OUTCOMES
- 8. A COUNTRY'S LIVING STANDARD DEPENDS ON ITS ABILITY TO PRODUCE GOODS AND SERVICES
- 9. PRICES RISE WHEN GOVERNMENT PRINTS TOO MUCH MONEY
- 10. SOCIETY FACES A SHORT-RUN TRADE-OFF BETWEEN INFLATION AND UNEMPLOYMENT

- TRADE-OFF:
 - OCCURS WHEN HAVING TO CHOOSE BETWEEN ALTERNATIVES
 - INVOLVES A SACRIFICE THAT MUST BE MADE IN ORDER TO OBTAIN SOMETHING ELSE
- IN ECONOMIC JARGON TRADE-OFF IS EXPRESSED IN TERMS OF OPPORTUNITY COST
- OPPORTUNITY COST:
 - THE COST OF SOMETHING IS WHAT YOU GIVE UP BY USING IT
 - = THE VALUE OF SOMETHING IN ITS BEST ALTERNATIVE USE
- EXAMPLE: IF ONE USES A RESOURCE SAY, WATER FOR ONE PURPOSE -SAY, IRRIGATION, ONE MAY HAVE TO GIVE UP THE VALUE OF USING THE WATER FOR ANOTHER PURPOSE - SAY, HYDROPOWER GENERATION

OPPORTUNITY COST: ILLUSTRATION

、 #

OPPORTUNITY COST: ILLUSTRATION

、 #

USE OF OPPORTUNITY COST: ILLUSTRATION IRRIGATION SCHEME REDUCING QUANTITY OF WATER FOR A HPP

	<u>1,000 USD</u>
LIFETIME BENEFIT OF IRRIGATION SCHEME	
PV OF FUTURE INCREMENTAL CROP PRODUCTION	2,200
LIFETIME COSTS OF IRRIGATION SCHEME	
PV CAPEX OF IRRIGATION DAM + CANALS	1,100
PV FUTURE O&M COSTS OF IRRIGATION SCHEME	<u> 300 </u>
TOTAL DIRECT COSTS IRRIGATION	<u>1,400</u>
LIFETIME DIRECT BENEFIT FROM IRRIGATION PROJECT	800
 LIFETIME VALUE OF LOST HP OUTPUT (1000 MWh/yr) 	
= OPPORTUNITY COST	<u> </u>
NET LIFETIME BENEFIT OF IRRIGATION SCHEME	<u>250</u>

- FROM THE COUNTRY POINT OF VIEW, THE VALUE OF THE LOSS OF HP ENERGY OUTPUT IS A COST, AN OPPORTUNITY COST
- THIS APPLIES EVEN IF THE IRRIGATION PROJECT PRECEDES THE HPP: LOSS OF A
 FUTURE OPPORTUNITY

PEOPLE/FIRMS MAKE DECISIONS "AT THE MARGIN"

UNIT OF OUTPUT 1 2 3	20	21	22	23	24	25	26
SALES REVENUE PER UNIT	15	15	15	15	15	15	15
COSTS PER UNIT	11	12	13	14	15	16	17
PROFIT PER UNIT	4	3	2	1	0	-1	-2

OBSERVATION: PEOPLE TRY TO BALANCE OUT COSTS AND BENEFITS OF GOING ONE STEP FURTHER

- BY INCREASING INPUT BY ONE UNIT AT A TIME AND OBSERVING HOW PROFIT IS AFFECTED
- THIS IS KNOWN AS MARGINAL ANALYSIS
- THE OWNER THEREBY MAXIMISES PROFIT
- THIS LINE OF THINKING CAN BE APPLIED TO EVERYDAY LIFE, IF PEOPLE TRY TO MAXIMIZE THEIR WELL-BEING

TEN PRINCIPLES OF ECONOMICS

(from an introductory textbook in economics)

HOW PEOPLE MAKE
 DECISIONS

- HOW PEOPLE
 INTERACT
- HOW THE ECONOMY AS A WHOLE WORKS

1. PEOPLE FACE TRADE-OFFS

- 2. THE COST OF SOMETHING IS WHAT YOU GIVE UP TO GET IT
- 3. RATIONAL PEOPLE THINK AT THE MARGIN
- 4. PEOPLE RESPOND TO INCENTIVES
- 5. TRADE CAN MAKE EVERYBODY BETTER OFF
- 6. MARKETS ARE USUALLY A GOOD WAY TO ORGANISE ECONOMIC ACTIVITY
- 7. GOVERNMENTS CAN SOMETIMES IMPROVE MARKET OUTCOMES
- 8. A COUNTRY'S LIVING STANDARD DEPENDS ON ITS ABILITY TO PRODUCE GOODS AND SERVICES
- 9. PRICES RISE WHEN GOVERNMENT PRINTS TOO MUCH MONEY
- 10. SOCIETY FACES A SHORT-RUN TRADE-OFF BETWEEN INFLATION AND UNEMPLOYMENT

INCENTIVES: FIRMS/ PEOPLE RESPOND TO PRICES CASE: INITIAL POWER SUPPLY IMBALANCE

SUMMARY OF SOME KEY ECONOMIC CONCEPTS

- TRADE-OFF AND OPPORTUNITY COST
- MARGINAL ANALYSIS
- MARKETS AND INCENTIVES

Hydropower Financing and Risk Management Nepal HYDROPOWER IN A CONTEXT

KATHMANDU NOVEMBER 2018

>

• TRADITIONAL POWER PLANNING:

- CAPACITY EXPANSION TO MEET PROJECTED DEMAND
- ECONOMIC LEAST-COST SOLUTIONS THROUGH SYSTEM ANALYSIS
- LIMITED / NO INTEGRATION WITH WATER RESOURCE PLANNING
- NARROW APPROACH
- IRP AND POWER SECTOR PLANNING (WORLD COMMISSION ON DAMS -WCD):
 - FULL INCLUSION AND EQUAL TREATMENT OF ALL OPTIONS SUPPLY
 & DEMAND
 - HYDROPOWER SEEN AS PART OF WATER RESOURCES PLANNING
 - EMPHASIS ON ENVIRONMENTAL AND SOCIAL IMPACTS, NOT ONLY TECHNICAL AND ECONOMIC ASPECTS

- PARTICIPATORY APPROACH
- VALUE OF WATER RECOGNISED
- BROAD APPROACH

INTEGRATED RESOURCE PLANNING FOR POWER (AS PROPOSED BY THE WORLD COMMISSION OF DAMS)

STEPS IN IRP FOR POWER

IWRP AND POWER

- IWRP ADOPTS THE RIVER BASIN OR CATCHMENT AREA AS THE BASIC PLANNING UNIT
- ALL COMPETING USES OF WATER TO BE CONSIDERED
- HYDROPOWER IS ONE OF SEVERAL, COMPETING USERS OF WATER
- HYDROPOWER IS SUBORDINATE TO OVERALL WATER RESOURCE
 PLANNING

#

HYDROPOWER OPTIONS ARE IDENTIFIED FOR INCLUSION IN A
 POWER SECTOR PLANNING PROCESS

INTEGRATED WATER RESOURCE PLANNING ILLUSTRATIONS FROM BHUTAN AND NEPAL

• NEPAL HYDROPOWER DEVELOPMENT POLICY, 2001

- MAKE THE RIVER BASINS THE BASIS OF DEVELOPMENT AND MANAGEMENT OF WATER RESOURCES IN ORDER TO ACHIEVE MAXIMUM BENEFITS FROM THE UTILIZATION OF WATER RESOURCES OF NEPAL
- ADOPT A BROADER PERSPECTIVE ON NATONAL DEVELOPMENT IN THE CONTEXT OF MACRO-ECONOMY IN DEVELOPING AND MANAGING HYDROPOWER IN LINE WITH THE CONCEPT OF DEVELOPING WATER RESOURCES IN AN INTEGRATED MANNER
- BHUTAN HYDROPOWER POLICY, 2008
 - MOA PLAYS AN IMPORTANT ROLE IN ENSURING SUSTAINABLE WATERSHED MANAGEMENT THROUGH CATCHMENT PROTECTION AND OTHER NATURE CONSERVATION WORKS IN ORDER TO SUPPORT THE AVAILABILITY OF WATER FOR HYDROPOWER GENERATION
 - MOA IN COLLABORATION WITH MOEA SHALL WORK OUT THE MODALITIES FOR INTEGRATED SUSTAINABLE WATER RESOURCES MANAGEMENT

INTEGRATED RESOURCE PLANNING FOR POWER

PRELIMINARY (ROUGH) SCREENING

- CONSIDERS MAIN FEATURES OF PROJECT ALTERNATIVES
 - TECHNICAL
 - ENVIRONMENT/SOCIAL
 - ECONOMIC
- A ROUGH ANALYSIS WITHOUT IN-DEPTH INFORMATION/DATA
- SEEKS TO ELIMINATE OBVIOUS UNDESIRABLE PROJECTS

LIFE CYCLE ANALYSIS (LCA)

- A TECHNIQUE TO ASSESS ENVIRONMENTAL IMPACTS ASSOCIATED WITH ALL THE STAGES OF AN ENERGY OPTION'S LIFE "FROM-CRADLE-TO-GRAVE"
 - FROM RAW MATERIAL EXTRACTION THROUGH MATERIALS PROCESSING, MANUFACTURE, DISTRIBUTION, USE, REPAIR AND MAINTENANCE, AND DECOMMISSIONING
- COMPREHENSIVELY COMPARES ENERGY AND MATERIAL FLOWS
 AND ENVIRONMENTAL RELEASES OF ALTERNATIVE ENERGY
 SUPPLY OPTION
- OPTIONS WHICH ARE CLEARLY INFERIOR WILL BE DISCARDED

#

• LCA NOT COMMONLY CARRIED OUT IN IRPs

MULTI-CRITERIA ANALYSIS

DIFFERENT TYPES OF

TO COMPARISON AND

IMPORTANCE

- MCA IS A TECHNIQUE THAT
 - ALLOWS COMPARISON OF DIFFERENT PROJECTS OF A CERTAIN TYPE (E.G. HYDROPOWER)
 - ACCOUNTS FOR THE HIGHLY VARYING IMPACTS OF THESE PROJECTS
 - MAY BE USED FOR COMPARISON OF DIFFERENT SITES OR DESIGN OF A SINGLE
 PROJECT
- IMPACTS OFTEN EXPRESSED IN VERY DIFFERENT SETS OF UNIT SCHALLENGE WITH RESPECT
 - COSTS: USc/kWh
 - **RISKS OF VARYING TYPES**
 - HA OF LAND INUNDATED/NUMBER OF PEOPLE TO BE RESETTLED
 - **BIOLOGICAL IMPACTS**
 - **OPPORTUNITY FOR RURAL ELECTRIFICATION, ETC.**
- THE IMPACTS ARE
 - EXPRESSED IN TERMS OF SCORES (WHICH ARE NORMALIZED)
 - GIVEN WEIGHTS (DEGREE OF IMPORTANCE)
 - TRANSFORMED INTO A COMMON YARDSTICK TO ALLOW RANKING OF OPTIONS
- THE RANKED OPTIONS: A BASIS FOR NEXT STEP: FEASIBILITY STUDIES

MCA ILLUSTRATION: IMPACTS AND CRITERIA OVERVIEW

MCA: SCORING AND WEIGHTING OF IMPACTS

(#

BHUTAN WRMP & PSMP

Ranked Order of Preference

Criteria:	Tech./Econ	Soc/Envt Overall		Ranking	Ranking
Weights	70 %	30 %	100 %	as per	as per
				MCA	FPCE
Project ID					
13.120	52	15	66	1	1
11.030	40	25	65	2	5
15.110	44	18	62	3	2
13.230B	40	15	55	4	3
17.150B	36	18	54	5	4
15.150B	35	18	53	6	7
14.020	38	14	52	7	6
16.010	29	19	49	8	9
14.010	34	12	46	9	8
16.030	25	14	40	10	10
12.082	27	10	38	11	11

〈 # 〉 26

STEPS IN IRP FOR POWER

PRESENT APPLICATION OF IRP IN POWER SECTOR

- COMPLETE IRPs ARE TIME CONSUMING AND COSTLY
- LIMITED NUMBER OF EXAMPLES OF FULL IRP EXERCISE
 IMPLEMENTED
- MORE COMMONLY, SOME PARTS OF IRP CARRIED OUT
- COUNTRIES WHERE PART OF PLANNING PROCESS CARRIED OUT: NEPAL, LAOS, VIETNAM, NORWAY, BHUTAN, OTHERS?
 - NORWAY 1984-92
 - "SAMLET PLAN FOR VASSDRAG"
 - NEPAL 1997-98
 - PRELIMINARY SCREENING
 - MULTI-CRITERIA ANALYSIS OF MEDIUM SIZED HYDROPOWER PROJECTS
 - EXPANSION PLAN FOR MEDIUM SIZED HPP
 - BHUTAN 2002/03:
 - WATER RESOURCE MANAGEMENT PLAN
 - PRELIMINARY SCREENING
 - MULTI-CRITERIA ANALYSIS
 - POWER EXPORT MASTER PLAN
 - A LIST OF CANDIDATE PROJECTS READY FOR FEASIBILITY STUDY

THE PROJECT CYCLE

WORLD BANK REPORT, AUGUST 2018 NEPAL: FIRST PROGRAMMATIC ENERGY SECTOR DEVELOPMENT POLICY CREDIT

"Investment decisions in the sector are not sufficiently informed by a formal planning process

- Investments in the sector are guided by the periodic plans of the National Planning Commission, which lay out the three-year targets for various sectors including the power sector.
- Investments to meet these targets are selected on a project-by-project basis without adequate consideration of technical and economic merits of the projects and without sufficient coordination with other investment decisions.
- The use of formal sector plans (covering, load demand, generation, transmission, and distribution) and river basin plans to inform the priority order of investments is absent.
- There is no coordination between access efforts through grid extension and off-grid renewable energy technologies.
- There is a need to strengthen the hydropower licensing process by moving from a developer-driven approach to an open, transparent, and efficient licensing process based on basin-wide hydropower development planning."